Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.786
Filtrar
2.
Artigo em Inglês | MEDLINE | ID: mdl-35212620

RESUMO

A polyphasic taxonomic study was carried out on an actinobacterial strain (AN110305T) isolated from soil sampled in the Republic of Korea. Cells of the strain were Gram-stain-positive, aerobic, non-motile and rod-shaped. Comparative 16S rRNA gene sequence studies showed a clear affiliation of strain AN110305T with Actinomycetia, with highest pairwise sequence similarities to Goodfellowiella coeruleoviolacea DSM 43935T (97.6%), Umezawaea tangerina MK27-91F2T (97.0%), Kutzneria chonburiensis NBRC 110610T (96.9%), Kutzneria buriramensis A-T 1846T (96.8%), Umezawaea endophytica YIM 2047XT (96.8%), Kutzneria albida NRRL B-24060T (96.7%) and Saccharothrix coeruleofusca NRRL B-16115T (96.6%). Cells of strain AN110305T formed pale-yellow colonies on Reasoner's 2A agar. MK-9 (H4) (68%) and MK-10 (H4) (32%) were the predominant menaquinones. Diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylmethyl ethanolamine, hydroxy-phosphatidylethanolamine, an unidentified aminolipid and an unidentified aminophospholipid were major polar lipids. Iso-C16:0 (24.5%), anteiso-C15:0 (19.3%), anteiso-C17:0 (15.7%) and iso-C15:0 (15.2%) were the major fatty acids and meso-diaminopimelic acid was the pepdidoglycan. The cell-wall sugars were composed of galactose, glucose, mannose and ribose. The genomic DNA G+C content was 70.7 mol%. Based on genotypic and phenotypic data, strain AN110305T could be distinguished from all genera within the family Pseudonocardiaceae and represents a novel genus and species named Solihabitans fulvus gen. nov., sp nov. The type strain is AN110305T (=KCTC 39307T =DSM 103572T).


Assuntos
Actinobacteria/classificação , Filogenia , Microbiologia do Solo , Actinobacteria/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Fosfolipídeos/química , RNA Ribossômico 16S/genética , República da Coreia , Análise de Sequência de DNA , Vitamina K 2/química
3.
Artigo em Inglês | MEDLINE | ID: mdl-35188884

RESUMO

Two new marine actinobacteria, designated as J2-1T and J2-2T, were isolated from a coral, Favites pentagona, collected from Rayong Province, Thailand. The taxonomic positions of the two strains were identified based on polyphasic taxonomy. Based on morphological characteristics and chemotaxonomy, strains J2-1T and J2-2T were identified as members of the genus Streptomyces and Kineosporia, respectively. Strains J2-1T and J2-2T showed the highest 16S rRNA gene sequence similarity to Streptomyces broussonetiae T44T (98.62 %) and Kineosporia babensis VN05A0415T (98.08 %), respectively. Strain J2-1T had chemotaxonomic properties resembling members of the genus Streptomyces. ll-Diaminopimelic acid, glucose and ribose were detected in the whole-cell hydrolysate. Diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol, phosphatidylinositolmannoside, unidentified aminolipid and five unidentified phospholipids were detected as the polar lipids. The major cellular fatty acids were C16 : 0 iso, C15 : 0 anteiso, C15 : 0 iso, C16 : 0, C17 : 0 anteiso, C14 : 0 iso and C17 : 0 iso. Strain J2-2T a showed similar cell composition to members of the genus Kineosporia. Both isomers of ll- and meso-diaminopimelic acid were detected in the peptidoglycan. Arabinose, galactose, madurose and xylose were observed in the whole-cell hydrolysate. The polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol, phosphatidylinositol mannoside, phosphatidylcholine, an unidentified phospholipid and an unidentified glycolipid. The major cellular fatty acids were C16 : 0, C18 : 1 ω9c, C18 : 0 10-methyl, tuberculostearic acid, C18 : 0 and C17 : 0. Both strains could be distinguished from their closely related type strains according to their phenotypic characteristics. Comparative genome analysis indicated the delineation of two novel species based on digital DNA-DNA hybridization and average nucleotide identity values, which were below 70 and 95 %, respectively. The names proposed are Streptomyces corallincola sp. nov. (J2-1T=TBRC 13503T=NBRC 115066T) and Kineosporia corallincola sp. nov. (J2-2T=TBRC 13504T=NBRC 114885T).


Assuntos
Actinobacteria , Antozoários , Filogenia , Streptomyces , Actinobacteria/classificação , Actinobacteria/isolamento & purificação , Animais , Antozoários/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Hibridização de Ácido Nucleico , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Streptomyces/classificação , Streptomyces/isolamento & purificação , Tailândia
4.
Microbiologyopen ; 11(1): e1259, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35212483

RESUMO

Ocean pollution is a worldwide environmental challenge that could be partially tackled through microbial applications. To shed light on the diversity and applications of the bacterial communities that inhabit the sediments trapped in artificial containers, we analyzed residues (polyethylene terephthalate [PET] bottles and aluminum cans) collected from the Mediterranean Sea by scanning electron microscopy and next generation sequencing. Moreover, we set a collection of culturable bacteria from the plastisphere that were screened for their ability to use PET as a carbon source. Our results reveal that Proteobacteria are the predominant phylum in all the samples and that Rhodobacteraceae, Woeseia, Actinomarinales, or Vibrio are also abundant in these residues. Moreover, we identified marine isolates with enhanced growth in the presence of PET: Aquimarina intermedia, Citricoccus spp., and Micrococcus spp. Our results suggest that the marine environment is a source of biotechnologically promising bacterial isolates that may use PET or PET additives as carbon sources.


Assuntos
Actinobacteria/crescimento & desenvolvimento , Bacteroidetes/crescimento & desenvolvimento , Sedimentos Geológicos/microbiologia , Polietilenotereftalatos , Proteobactérias/crescimento & desenvolvimento , Actinobacteria/genética , Actinobacteria/isolamento & purificação , Actinobacteria/ultraestrutura , Bacteroidetes/genética , Bacteroidetes/isolamento & purificação , Bacteroidetes/ultraestrutura , Biodegradação Ambiental , Biologia Computacional , DNA Bacteriano/química , DNA Bacteriano/isolamento & purificação , Sequenciamento de Nucleotídeos em Larga Escala , Microscopia Eletrônica de Varredura , Proteobactérias/genética , Proteobactérias/isolamento & purificação , Proteobactérias/ultraestrutura , RNA Ribossômico 16S/síntese química , Resíduos
5.
Microbiol Spectr ; 10(1): e0238021, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35019771

RESUMO

Sialic acids are present in humans and other metazoans, playing essential roles in physiological and pathological processes. Commensal and pathogenic bacteria have evolved the capacity to utilize sialic acids as nutrient and energy sources. However, in some actinobacteria, sialic acid catabolism (SAC) is associated with free-living populations. To unravel the distribution and evolutionary history of SAC in the phylum Actinobacteria, we analyzed the presence and diversity of the putative SAC gene cluster (nan) in 7,180 high-quality, nonredundant actinobacterial genomes that covered 1,969 species. The results showed that ∼13% of actinobacterial species had the potential to utilize sialic acids, with 45 species capable of anhydro-SAC, all except two of them through the canonical pathway. These species belonged to 20 orders and 81 genera, with ∼36% of them from four genera, Actinomyces, Bifidobacterium, Corynebacterium, and Streptomyces. Moreover, ∼40% of the nan-positive species are free living. Phylogenetic analysis of the key nan genes, nanA, nanK, and nanE, revealed a strong signal of horizontal gene transfer (HGT), accompanied with vertical inheritance and gene loss. This evolutionary pattern led to high diversity and differential distribution of nan among actinobacterial taxa and might cause the cluster to spread to some free-living species while losing in some host-associated species. The evolution of SAC in actinobacteria probably represents the evolution of certain kinds of noncore bacterial functions for environmental adaptation and lifestyle switch, in which HGT plays a dominant role. IMPORTANCE Sialic acids play essential roles in the physiology of humans and other metazoan animals, and microbial sialic acid catabolism (SAC) is one of the processes critical for pathogenesis. To date, microbial SAC is studied mainly in commensals and pathogens, while its distribution in free-living microbes and evolutionary pathway remain largely unexplored. Here, by examining all actinobacterial genomes available, we demonstrate that putative SAC is present in a small proportion of actinobacterial species, of which, however, ∼40% are free-living species. We also reveal remarkable difference in the distribution of SAC among actinobacterial taxa and high diversity of the putative SAC gene clusters. HGT plays a significant role in the evolution of SAC, accompanied with vertical inheritance and gene loss. Our results provide a comprehensive and systematic picture of the distribution and evolutionary history of SAC in actinobacteria, expanding the current knowledge on bacterial adaptation and diversification.


Assuntos
Actinobacteria/genética , Actinobacteria/metabolismo , Evolução Molecular , Ácido N-Acetilneuramínico/metabolismo , Actinobacteria/classificação , Actinobacteria/isolamento & purificação , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Transferência Genética Horizontal , Genoma Bacteriano , Humanos , Família Multigênica , Filogenia
6.
J Microbiol ; 60(2): 147-155, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34994958

RESUMO

Two facultatively anaerobic, short rod-shaped, non-motile, Gram-stain-positive, unknown bacterial strains (JY-X040T and JY-X174) were isolated from fluvial sediments of Tongtian River in Yushu Tibetan Autonomous Prefecture, Qinghai province, China. Cells formed translucent, gray, round and convex colonies, with a diameter of less than 0.5 mm after 5 days of incubation at 30°C on brain heart infusion-5% sheep blood agar. The 16S rRNA gene sequence similarity between strain JY-X040T and Fudania jinshanensis 313T is 93.87%. In the four phylogenetic trees constructed based on the 16S rRNA gene and 423 core genes, the two isolates form an independent branch, phylogenetically closest to F. jinshanensis 313T, but could not be classified as a member of the genus Fudania or any other genus of the family Arcanobacteriaceae. The DNA G + C content of strain JY-X040T was 57.8%. Calculation results of average nucleotide identity, digital DNA-DNA hybridization value and amino acid identity between strain JY-X040T and F. jinshanensis 313T are 69.9%, 22.9%, and 64.1%. The major cellular fatty acids were C16:0 (23%) and C18:1ω9c (22%). The cell-wall peptidoglycan type was A5α (L-Lys-L-Ala-L-Lys-D-Glu). The polar lipids comprised diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol, phosphatidylinositol mannoside and four unidentified components. The whole-cell sugars contained rhamnose and ribose. MK-10(H4) was the sole respiratory quinone. The minimum inhibitory concentration of streptomycin was 32 µg/ml. All physiological, biochemical, chemotaxonomic and genomic characteristics support that strains JY-X040T and JY-X174 represent members of a novel species in a new genus, Changpingibacter yushuensis gen. nov., sp. nov. The type strain is JY-X040T (GDMCC 1.1996T = KCTC 49514T).


Assuntos
Actinobacteria/classificação , Actinobacteria/isolamento & purificação , Sedimentos Geológicos/microbiologia , Actinobacteria/citologia , Actinobacteria/genética , Antibacterianos/farmacologia , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano , Farmacorresistência Bacteriana , Ácidos Graxos/análise , Genoma Bacteriano , Lipídeos/análise , Testes de Sensibilidade Microbiana , Hibridização de Ácido Nucleico , Filogenia , RNA Ribossômico 16S , Análise de Sequência de DNA , Estreptomicina/farmacologia , Açúcares/análise , Tibet
7.
Sci Rep ; 12(1): 1415, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-35082330

RESUMO

Intestinal gluconeogenesis (IGN), gastric bypass (GBP) and gut microbiota positively regulate glucose homeostasis and diet-induced dysmetabolism. GBP modulates gut microbiota, whether IGN could shape it has not been investigated. We studied gut microbiota and microbiome in wild type and IGN-deficient mice, undergoing GBP or not, and fed on either a normal chow (NC) or a high-fat/high-sucrose (HFHS) diet. We also studied fecal and urine metabolome in NC-fed mice. IGN and GBP had a different effect on the gut microbiota of mice fed with NC and HFHS diet. IGN inactivation increased abundance of Deltaproteobacteria on NC and of Proteobacteria such as Helicobacter on HFHS diet. GBP increased abundance of Firmicutes and Proteobacteria on NC-fed WT mice and of Firmicutes, Bacteroidetes and Proteobacteria on HFHS-fed WT mice. The combined effect of IGN inactivation and GBP increased abundance of Actinobacteria on NC and the abundance of Enterococcaceae and Enterobacteriaceae on HFHS diet. A reduction was observed in the amounf of short-chain fatty acids in fecal (by GBP) and in both fecal and urine (by IGN inactivation) metabolome. IGN and GBP, separately or combined, shape gut microbiota and microbiome on NC- and HFHS-fed mice, and modify fecal and urine metabolome.


Assuntos
Derivação Gástrica/métodos , Microbioma Gastrointestinal/fisiologia , Gluconeogênese/fisiologia , Intestinos/metabolismo , Metaboloma , Estômago/metabolismo , Actinobacteria/classificação , Actinobacteria/genética , Actinobacteria/isolamento & purificação , Animais , DNA Bacteriano/genética , Enterobacteriaceae/classificação , Enterobacteriaceae/genética , Enterobacteriaceae/isolamento & purificação , Enterococcaceae/classificação , Enterococcaceae/genética , Enterococcaceae/isolamento & purificação , Ácidos Graxos Voláteis/metabolismo , Firmicutes/classificação , Firmicutes/genética , Firmicutes/isolamento & purificação , Intestinos/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Filogenia , Proteobactérias/classificação , Proteobactérias/genética , Proteobactérias/isolamento & purificação , Estômago/microbiologia , Estômago/cirurgia
8.
Artigo em Inglês | MEDLINE | ID: mdl-35085062

RESUMO

A novel actinobacterium, designated strain CFH 90414T, was isolated from sediment sampled at a saline lake in Yuncheng, Shanxi, PR China. The taxonomic position of the strain was investigated by using a polyphasic approach. Cells of strain CFH 90414T were Gram-reaction-positive, aerobic and non-motile. Growth occured at 4-40 °C, pH 5.0-9.0 and in the presence of up to 0-3.0 % (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain CFH 90414T was a member of the genus Agromyces. The 16S rRNA gene sequence similarity analysis indicated that strain CFH 90414T was most closely related to Agromyces italicus JCM 14320T (98.07 %) and Agromyces lapidis JCM 14321T (97.18 %). The whole genome of CFH 90414T was 3.64 Mb, and showed a G+C content of 71.5 mol%. The average nucleotide identity (ANI) values and digital DNA-DNA hybridization (dDDH) values between CFH 90414T and the other species of the genus Agromyces were found to be low (ANI <78.99 % and dDDH <22.9 %). The whole-cell sugars were rhamnose, mannose, ribose, glucose and galactose. The isolate contained l-2,4-diaminobutyric acid, d-alanine, d-glutamic acid and glycine in the cell-wall peptidoglycan. The predominant menaquinone was MK-12. The major cellular fatty acids were anteiso-C15 : 0, anteiso-C17 : 0 and iso-C16 : 0. The polar lipid profile contained diphosphatidylglycerol, phosphatidylglycerol and an unidentified glycolipid. On the basis of phenotypic, genotypic and phylogenetic data, strain CFH 90414T is considered to represent a novel species of the genus Agromyces, for which the name Agromyces agglutinans sp. nov. is proposed. The type strain is CFH 90414T (=DSM 105966T=KCTC 49062T).


Assuntos
Actinobacteria/classificação , Ácidos Graxos , Sedimentos Geológicos/microbiologia , Lagos , Filogenia , Águas Salinas , Actinobacteria/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases , China , DNA Bacteriano/genética , Ácidos Graxos/química , Lagos/microbiologia , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vitamina K 2/química
9.
Artigo em Inglês | MEDLINE | ID: mdl-35044904

RESUMO

A Gram-stain-positive, aerobic, non-sporulating, yellow-pigmented and rod or cocci-shaped bacterium, designated Arc0846-15T, was isolated from the kelp Laminaria japonica. Strain Arc0846-15T was found to grow at 16-35 °C (optimum, 28 °C), at pH 6.0-9.5 (optimum, 7.0) and in the presence of 0-6 % (w/v) NaCl (optimum, 2 %). Cells were positive for catalase and negative for oxidase activity. Phylogenetic analyses, based on 16S rRNA gene sequence comparisons, revealed that the nearest phylogenetic neighbour strains of strain Arc0846-15T were Ornithinimicrobium murale 01 Gi-040T (96.2 %), Ornithinimicrobium kibberense K22-20T (96.1 %) and Ornithinimicrobium humiphilum HKI 0124T (95.2 %). Based on phylogenomic analysis, the average nucleotide identity values between strain Arc0846-15T and the neighbour strains were 69.8, 69.7 and 69.8 %, respectively; the digital DNA-DNA hybridization values between strain Arc0846-15T and its three closest neighbour strains were 18.8, 19.1 and 19.3 %, respectively. The predominant menaquinone was MK-8 (H4). The dominant cellular fatty acids were C17 : 1 ω8c, iso-C15 : 0, iso-C16 : 0 and C17 : 0. The polar lipids contained diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol, glycolipid, one unidentified aminolipid and four unidentified lipids. The DNA G+C content of strain Arc0846-15T was 61.6 mol% based on the whole genome sequence. Based on the phylogenetic and phenotypic characteristics, strain Arc0846-15T is considered to represent a novel species of the genus Ornithinimicrobium, for which the name Ornithinimicrobium laminariae sp. nov. is proposed, with Arc0846-15T (=KCTC 49655T=MCCC 1K06093T) as the type strain.


Assuntos
Actinobacteria/classificação , Kelp , Laminaria , Filogenia , Actinobacteria/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Kelp/microbiologia , Laminaria/microbiologia , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
10.
Int J Syst Evol Microbiol ; 72(12)2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36748421

RESUMO

A Gram-negative, non-motile, aerobic bacterium, named 02-257T, was isolated from Antarctic soil. The cells are surrounded by relatively thin capsules and were catalase-positive and oxidase-negative cocci. Growth of strain 02-257T was observed at 4-35 °C (optimum, 28-30 °C), pH 6.0-8.0 (optimum, pH 6.0) and with 0-1.5% NaCl (optimum, 0 %). Strain 02-257 showed the highest 16S rRNA gene sequence similarity to Paraconexibacter algicola Seoho-28T (95.06 %). Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain 02-257T is a member of a novel species belonging to the clade formed by members of the genus Paraconexibacter in the family Paraconexibacteraceae. The DNA G+C content was 72.9 mol%. Strain 02-257T contained C16 : 0-iso (23.0 %), C18  :  1 ω9c (13.8 %), C16 : 0 (12.5 %) and C17 : 1 ω9c-iso (10.8 %) as major cellular fatty acids and menaquinone MK-7(H4) was detected as the only isoprenoid quinone. Diphosphatidylglycerol, phosphatidylinositol, phosphatidylinositole mannoside, phosphatidylinositole dimannoside, unidentified phosphoglycolipid, unidentified aminophospholipid, two unidentified phospholipids, three unidentified aminolipids and six unidentified lipids were the major polar lipids. meso-Diaminopimelic acids were the diagnostic diamino acids in the cell-wall peptidoglycan. On the basis of phenotypic, chemotaxonomic and phylogenetic data, strain 02-257T is considered to represent a novel species of the genus Paraconexibacter, for which the name Paraconexibacter antarcticus sp. nov. is proposed. The type strain is 02-257T (=CCTCC AB 2021030T=KCTC 49619T).


Assuntos
Actinobacteria , Filogenia , Microbiologia do Solo , Tundra , Actinobacteria/classificação , Actinobacteria/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vitamina K 2/química , Regiões Antárticas
11.
J Inorg Biochem ; 226: 111651, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34740038

RESUMO

A new dye-decolorizing peroxidase (DyP) was discovered through a data mining workflow based on HMMER software and profile Hidden Markov Model (HMM) using a dataset of 1200 genomes originated from a Actinobacteria strain collection isolated from Trondheim fjord. Instead of the conserved GXXDG motif known for Dyp-type peroxidases, the enzyme contains a new conserved motif EXXDG which has been not reported before. The enzyme can oxidize an anthraquinone dye Remazol Brilliant Blue R (Reactive Blue 19) and other phenolic compounds such as ferulic acid, sinapic acid, caffeic acid, 3-methylcatechol, dopamine hydrochloride, and tannic acid. The acidic pH optimum (3 to 4) and the low temperature optimum (25 °C) were confirmed using both biochemical and electrochemical assays. Kinetic and thermodynamic parameters associated with the catalytic redox center were attained by electrochemistry.


Assuntos
Actinobacteria , Organismos Aquáticos , Proteínas de Bactérias/química , Estuários , Peroxidase/química , Actinobacteria/enzimologia , Actinobacteria/genética , Actinobacteria/isolamento & purificação , Organismos Aquáticos/enzimologia , Organismos Aquáticos/genética , Proteínas de Bactérias/genética , Noruega , Peroxidase/genética
12.
Pediatr Nephrol ; 37(1): 217-220, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34633526

RESUMO

INTRODUCTION: Gordonia species, aerobic, weakly acid-fast, Gram-positive bacilli, are a rare cause of peritonitis in patients undergoing peritoneal dialysis (PD). We report the first pediatric case of PD-related peritonitis caused by Gordonia bronchialis. CASE PRESENTATION: A 13-year-old girl with chronic kidney disease (CKD) stage 5D, on continuous cycling PD (CCPD) for 8 years, presented with cloudy PD effluent, with no abdominal discomfort or fever. Intra-peritoneal (IP) loading doses of vancomycin and ceftazidime were started at home after obtaining a PD effluent sample, which showed WBC 2,340 × 10 /L (59% neutrophils) and Gram-positive bacilli. On admission, she was clinically well and afebrile, with no history of methicillin-resistant Staphylococcus aureus (MRSA) infection, so vancomycin was discontinued, and IP ceftazidime and cefazolin were started, following a loading dose of intravenous cefazolin. Gordonia species grew after 5 days of incubation and later identified as Gordonia bronchialis. IP vancomycin was restarted as monotherapy, empirically for a total of 3 weeks therapy. A 2-week course of oral ciprofloxacin was added, based on susceptibility testing. PD catheter replacement was advised due to the risk of recurrence but was refused. A relapse occurred 16 days after discontinuing antibiotics, successfully treated with a 2-week course of IP ceftazidime and vancomycin. The PD catheter was removed and hemodialysis initiated. She received a further 2-week course of oral ciprofloxacin and amoxicillin-clavulanate post PD catheter removal. CONCLUSIONS: Gordonia bronchialis is an emerging pathogen in PD peritonitis and appears to be associated with a high risk of relapse. PD catheter replacement is strongly suggested.


Assuntos
Actinobacteria , Diálise Peritoneal , Peritonite , Actinobacteria/isolamento & purificação , Adolescente , Feminino , Humanos , Falência Renal Crônica/terapia , Diálise Peritoneal/efeitos adversos , Peritonite/microbiologia
13.
Int J Syst Evol Microbiol ; 71(12)2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34904944

RESUMO

A Gram-positive, non-spore-forming actinobacterium (IMT-300T) was isolated from soil amended with humic acid in Malvern, AL, USA. This soil has been used for 50+years for the cultivation of earthworms for use as fish bait. Based on 16S rRNA gene sequence similarity studies, strain IMT-300T was shown to belong to the genus Leucobacter and was closely related to the type strain of 'Leucobacter margaritiformis' L1T (97.8%). Similarity to all other type strains of Leucobacter species was lower than 97.2 %. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between the IMT-300T genome assembly and those of the closest relative Leucobacter type strain were 81.4 and 23.3 % (Leucobacter chironomi), respectively. The peptidoglycan of strain IMT-300T contained l-2,4-diaminobutyric acid as the diagnostic diamino acid. In addition, glycine, d- and l-alanine and d-glutamic acid were found. The peptidoglycan type represents a variant of B2δ (B11). The major quinones were menaquinones MK-10 and MK-11. The polar lipid profile consisted of the major lipids diphosphatidylglycerol, phosphatidylglycerol and moderate to minor amounts of two unidentified phospholipids, two unidentified glycolipids and an unidentified aminophospholipid. The polyamine pattern contained major amounts of spermidine and spermine. Strain IMT-300T contained the major fatty acids C15 : 0 anteiso, C16 : 0 iso and C17 : 0 anteiso, like other members of the genus Leucobacter. The results of ANI and dDDH analyses and physiological and biochemical tests allowed a genotypic and phenotypic differentiation of strain IMT-300T from the most closely related Leucobacter species. Strain IMT-300T represents a novel Leucobacter species, for which we propose the name Leucobacter soli sp. nov., with the type strain IMT-300T (CIP 111803T=DSM 110505T=CCM 9020T=LMG 31600T).


Assuntos
Actinobacteria/classificação , Substâncias Húmicas , Filogenia , Microbiologia do Solo , Actinobacteria/isolamento & purificação , Animais , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Hibridização de Ácido Nucleico , Peptidoglicano/química , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vitamina K 2/química
14.
Int J Syst Evol Microbiol ; 71(12)2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34914571

RESUMO

A novel Gram-stain-positive, strictly anaerobic, elliptical, non-motile and non-flagellated bacterium, designed LZLJ-2T, was isolated from the mud in a fermentation cellar used for the production of Chinese Luzhou-flavour Baijiu. Growth occurred at 28-45 °C (optimum, 37 °C), at pH 6.0-7.0 (optimum, pH 6.0) and with concentrations of NaCl up to 2 % (w/v; optimum, 0 %). On the basis of 16S rRNA gene sequence similarity, strain LZLJ-2T belonged to the genus Thermophilibacter and was most closely related to Thermophilibacter mediterraneus Marseille-P3256T (similarity 96.9 %), Olsenella gallinarum ClaCZ62T (similarity 96.6 %) and Thermophilibacter provencensis Marseille-P2912T (similarity 96.4 %). In addition, strain LZLJ-2T had high similarity to the genus Olsenella, including Olsenella profusa DSM 13989T (similarity 94.9 %), Olsenella umbonata DSM 22620T (similarity 94.9 %), Olsenella uli ATCC 49627T (similarity 94.22 %), Tractidigestivibacter scatoligenes DSM 28304T (similarity 93.9 %) and Paratractidigestivibacter faecalis KCTC 15699T (similarity 93.25 %). Comparative genome analysis showed that orthoANI values between strain LZLJ-2T and Thermophilibacter mediterraneus Marseille-P3256T, Olsenella gallinarum ClaCZ62T, Thermophilibacter provencensis Marseille-P2912T, Olsenella profusa DSM 13989T, Olsenella umbonata DSM 22620T, Olsenella uli ATCC 49627T, Tractidigestivibacter scatoligenes DSM 28304T and Paratractidigestivibacter faecalis KCTC 15699T were 78.68, 78.99, 78.29, 73.40, 74.00, 74.30, 75.08 and 77.23 %, and the genome-to-genome distance values were respectively 22.3, 22.5, 22.4, 19.6, 20.5, 19.7, 20.5 and 21.5 %. The genomic DNA G+C content of strain LZLJ-2T was 65.21 mol%. The predominant cellular fatty acids (>10 %) of strain LZLJ-2T were C18 : 1 cis 9 (33.7 %), C14 : 0 (22.0 %) and C18 : 1 cis 9 DMA (13.5 %). d-Glucose, sucrose, mannose, maltose, lactose (weak), salicin, glycerol (weak), cellobiose and trehalose (weak) could be used by strain LZLJ-2T as sole carbon sources. Enzyme activity results showed positive reactions with valine arylamidase, leucine arylamidase, crystine arylamidase, acid phosphatase, alkaline phosphatase, esterase (C4) (weakly positive), naphthol-AS-BI-phosphohydrolase, α-glucosidase and ß-glucosidase. The major end products of glucose fermentation were lactic acid and acetic acid. It produced skatole from indole acetic acid, and produced p-cresol from modified peptone-yeast extract medium with glucose. Based on the 16S rRNA gene trees as well as the genome core gene tree, it is suggested that Olsenella gallinarum are transferred to genus Thermophilibacter as Thermophilibacter gallinarum comb. nov. Based on phenotypic, genotypic and phylogenetic data, strain LZLJ-2T is considered to represent a novel species of the genus Thermophilibacter, for which the name Thermophilibacter immobilis sp. nov. is proposed. The type strain is LZLJ-2T (=KCTC 25162T=JCM 34224T).


Assuntos
Actinobacteria/classificação , Ácidos Graxos , Fermentação , Filogenia , Microbiologia do Solo , Actinobacteria/isolamento & purificação , Bebidas Alcoólicas , Técnicas de Tipagem Bacteriana , Composição de Bases , China , DNA Bacteriano/genética , Ácidos Graxos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
15.
Int J Syst Evol Microbiol ; 71(12)2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34870581

RESUMO

Two obligately anaerobic, Gram-stain-positive, rod-shaped bacteria were isolated from faecal samples of healthy humans in Japan. 16S rRNA gene sequence analysis indicated that these two strains (8CFCBH1T and 9CBH6) belonged to the genus Adlercreutzia, which is known as an equol-producing bacterium. The closest neighbours of strain 8CFCBH1T were Adlercreutzia equolifaciens subsp. equolifaciens DSM 19450T (98.6%), Adlercreutzia equolifaciens subsp. celatus do03T (98.4%), Adlercreutzia muris WCA-131-CoC-2T (96.6%), Parvibacter caecicola NR06T (96.4%), Adlercreutzia caecimuris B7T (95.3%) and Adlercreutzia mucosicola Mt1B8T (95.3%). The closest relatives to strain 9CBH6 were A. equolifaciens subsp. equolifaciens DSM 19450T (99.8%), A. equolifaciens subsp. celatus do03T (99.6%) and A. muris WCA-131-CoC-2T (96.8%). Strain 8CFCBH1T showed 22.3-53.5% digital DNA-DNA hybridization (dDDH) values with its related species. In addition, the average nucleotide identity (ANI) values between strain 8CFCBH1T and its related species ranged from 75.4 to 93.3%. On the other hand, strain 9CBH6 was considered as A. equolifaciens based on the dDDH and ANI values (>70% dDDH and >95-96% ANI). Strain 9CBH6 showed daidzein-converting activity, as expected from the result of genome analysis. The genome of strain 8CFCBH1T lacked four genes involved in equol production. Growing cells of strain 8CFCBH1T were not capable of converting daidzein. Based on the collected data, strain 8CFCBH1T represents a novel species in the genus Adlercreutzia, for which the name Adlercreutzia hattorii sp. nov. is proposed. The type strain of A. hattorii is 8CFCBH1T (=JCM 34083T=DSM 112284T).


Assuntos
Actinobacteria/classificação , Equol , Filogenia , Actinobacteria/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Equol/biossíntese , Fezes/microbiologia , Humanos , Japão , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
16.
Molecules ; 26(23)2021 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-34885912

RESUMO

Mangrove sediment ecosystems in the coastal areas of the Yucatan peninsula are unique environments, influenced by their karstic origin and connection with the world's largest underground river. The microbial communities residing in these sediments are influenced by the presence of mangrove roots and the trading chemistry for communication between sediment bacteria and plant roots can be targeted for secondary metabolite research. To explore the secondary metabolite production potential of microbial community members in mangrove sediments at the "El Palmar" natural reserve in Sisal, Yucatan, a combined meta-omics approach was applied. The effects of a cultivation medium reported to select for actinomycetes within mangrove sediments' microbial communities was also analyzed. The metabolome of the microbial communities was analyzed by high-resolution liquid chromatography-tandem mass spectrometry, and molecular networking analysis was used to investigate if known natural products and their variants were present. Metagenomic results suggest that the sediments from "El Palmar" harbor a stable bacterial community independently of their distance from mangrove tree roots. An unexpected decrease in the observed abundance of actinomycetes present in the communities occurred when an antibiotic-amended medium considered to be actinomycete-selective was applied for a 30-day period. However, the use of this antibiotic-amended medium also enhanced production of secondary metabolites within the microbial community present relative to the water control, suggesting the treatment selected for antibiotic-resistant bacteria capable of producing a higher number of secondary metabolites. Secondary metabolite mining of "El Palmar" microbial community metagenomes identified polyketide synthase and non-ribosomal peptide synthetases' biosynthetic genes in all analyzed metagenomes. The presence of these genes correlated with the annotation of several secondary metabolites from the Global Natural Product Social Molecular Networking database. These results highlight the biotechnological potential of the microbial communities from "El Palmar", and show the impact selective media had on the composition of communities of actinobacteria.


Assuntos
Actinobacteria/isolamento & purificação , Sedimentos Geológicos/microbiologia , Microbiota , Actinobacteria/genética , Actinobacteria/metabolismo , Metaboloma , Metabolômica , Metagenoma , Metagenômica
17.
BMC Microbiol ; 21(1): 335, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34876006

RESUMO

BACKGROUND: The native potatoes (Solanum tuberosum subsp. tuberosum L.) grown in Chile (Chiloé) represent a new, unexplored source of endophytes to find potential biological control agents for the prevention of bacterial diseases, like blackleg and soft rot, in potato crops. RESULT: The objective of this study was the selection of endophytic actinobacteria from native potatoes for antagonistic activity against Pectobacterium carotovorum subsp. carotovorum and Pectobacterium atrosepticum, and their potential to suppress tissue maceration symptoms in potato tubers. This potential was determined through the quorum quenching activity using a Chromobacterium violaceaum ATCC 12472 Wild type (WT) bioassay and its colonization behavior of the potato plant root system (S. tuberosum) by means of the Double labeling of oligonucleotide probes for fluorescence in situ hybridization (DOPE-FISH) targeting technique. The results showed that although Streptomyces sp. TP199 and Streptomyces sp. A2R31 were able to inhibit the growth of the pathogens, only the Streptomyces sp. TP199 isolate inhibited Pectobacterium sp. growth and diminished tissue maceration in tubers (p ≤ 0.05). Streptomyces sp. TP199 had metal-dependent acyl homoserine lactones (AHL) quorum quenching activity in vitro and was able to colonize the root endosphere 10 days after inoculation. CONCLUSIONS: We concluded that native potatoes from southern Chile possess endophyte actinobacteria that are potential agents for the disease management of soft rot and blackleg.


Assuntos
Actinobacteria/fisiologia , Antibiose/fisiologia , Endófitos/fisiologia , Solanum tuberosum/microbiologia , Actinobacteria/classificação , Actinobacteria/genética , Actinobacteria/isolamento & purificação , Agentes de Controle Biológico/isolamento & purificação , Chile , Endófitos/classificação , Endófitos/genética , Endófitos/isolamento & purificação , Pectobacterium/fisiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Tubérculos/microbiologia , Percepção de Quorum , Streptomyces/classificação , Streptomyces/genética , Streptomyces/isolamento & purificação , Streptomyces/fisiologia
18.
J Immunol Res ; 2021: 4973589, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34722779

RESUMO

METHOD: This study included 74 Chinese male patients with HCC. They were divided into early (n = 19), intermediate (n = 37), and terminal (n = 18) groups, referred to as Barcelona Clinic Liver Cancer stage 0+A, B, and C+D, respectively. Paired fecal and plasma samples were collected. Microbial composition and profiles were analyzed by 16S rRNA gene sequencing. The levels of gut damage marker (regenerating islet-derived protein 3α (REG3α)) and microbial translocation markers (soluble CD14 (sCD14), lipopolysaccharide-binding protein (LBP), peptidoglycan recognition proteins (PGRPs)) were determined in plasma samples of patients by ELISA. Twenty plasma cytokine and chemokines were determined by Luminex. RESULTS: In early, intermediate, and terminal groups, the abundance of the Bifidobacteriaceae family decreased significantly (3.52%, 1.55%, and 0.56%, respectively, P = 0.003), while the abundance of the Enterococcaceae family increased significantly (1.6%, 2.9%, and 13.4%, respectively, P = 0.022). Levels of REG3α and sCD14 were markedly elevated only in the terminal group compared with the early (P = 0.025 and P = 0.048) and intermediate groups (P = 0.023 and P = 0.046). The level of LBP significantly increased in the intermediate (P = 0.035) and terminal (P = 0.025) groups compared with the early group. The PGRP levels were elevated only in the terminal group compared with the early group (P = 0.018). The ratio of Enterococcaceae to Bifidobacteriaceae was significantly associated with the levels of REG3α, LBP, sCD14, and PGRPs. With HCC progression, increased levels of inflammatory cytokines accompanied by a T cell-immunosuppressive response and microbial translocation were observed. CONCLUSION: Gut microbiota compositional and functional shift, together with elevated gut damage and microbial translocation, may promote HCC development by stimulating inflammatory response and suppressing T cell response.


Assuntos
Translocação Bacteriana/imunologia , Carcinoma Hepatocelular/imunologia , Disbiose/complicações , Microbioma Gastrointestinal/imunologia , Neoplasias Hepáticas/imunologia , Actinobacteria/genética , Actinobacteria/imunologia , Actinobacteria/isolamento & purificação , Idoso , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/microbiologia , Carcinoma Hepatocelular/patologia , DNA Bacteriano/isolamento & purificação , Progressão da Doença , Disbiose/diagnóstico , Disbiose/imunologia , Disbiose/microbiologia , Enterococcaceae/genética , Enterococcaceae/imunologia , Enterococcaceae/isolamento & purificação , Fezes/microbiologia , Microbioma Gastrointestinal/genética , Humanos , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/microbiologia , Neoplasias Hepáticas/patologia , Masculino , Pessoa de Meia-Idade , RNA Ribossômico 16S
19.
J Microbiol ; 59(11): 1010-1018, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34724179

RESUMO

The actinobacterial group is regarded as a reservoir of biologically active natural products and hydrolytic enzymes with the potential for biomedical and industrial applications. Here, we present the complete genome sequence of Isoptericola dokdonensis DS-3 isolated from soil in Dokdo, small islets in the East Sea of Korea. This actinomycete harbors a large number of genes encoding carbohydrate-degrading enzymes, and its activity to degrade carboxymethyl cellulose into glucose was experimentally evaluated. Since the genus Isoptericola was proposed after reclassification based on phylogenetic analysis, strains of Isoptericola have been continuously isolated from diverse environments and the importance of this genus in the ecosystem has been suggested by recent culturomic or metagenomic studies. The phylogenic relationships of the genus tended to be closer among strains that had been isolated from similar habitats. By analyzing the properties of published genome sequences of seven defined species in the genus, a large number of genes for carbohydrate hydrolysis and utilization, as well as several biosynthetic gene clusters for secondary metabolites, were identified. Genomic information of I. dokdonensis DS-3 together with comparative analysis of the genomes of Isoptericola provides insights into understanding this actinobacterial group with a potential for industrial applications.


Assuntos
Actinobacteria/enzimologia , Actinobacteria/genética , Proteínas de Bactérias/metabolismo , Celulase/metabolismo , Microbiologia do Solo , Actinobacteria/classificação , Actinobacteria/isolamento & purificação , Proteínas de Bactérias/genética , Celulase/genética , Celulose/metabolismo , Genoma Bacteriano , Genômica , Família Multigênica , Filogenia , República da Coreia
20.
Microbiol Spectr ; 9(2): e0039821, 2021 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-34724730

RESUMO

Quinclorac (QNC) is a persistent, highly selective, hormonal herbicide of low toxicity. QNC accumulates in soil and affects the growth and development of crops planted subsequent to its application. In this study, we isolated and screened a QNC-degrading bacterial strain, strain D, from rice paddy soil. Morphological analysis, physiological and biochemical tests, and 16S rRNA gene sequencing led us to identify strain D as a Cellulosimicrobium cellulans strain. We investigated the characteristics of strain D in relation to QNC degradation. Under optimal culture conditions, the QNC degradation rate was 45.9% after 21 days of culture. QNC degradation by strain D in the field was modeled and quantified by a pot experiment. The results show that strain D promotes rice growth and degrades QNC. This research has identified a new bacterial species that degrades QNC, providing a foundation for further research into QNC remediation. IMPORTANCE QNC-degrading bacteria have been isolated from different environments, but there are no reports of Cellulosimicrobium cellulans strains that degrade QNC. In this study, a previously unidentified bacterial strain that degrades QNC, strain D, was screened from paddy soil. The characteristics of strain D that relate to QNC degradation were investigated in detail. The results showed that strain D effectively degraded QNC. Two degradation products of QNC formed by strain D that have not been reported previously, i.e., 3-pyridylacetic acid (m/z 138.0548) and 3-ethylpyridine (m/z 108.0805), were identified using high-performance liquid chromatography-quadrupole time of flight mass spectrometry. Strain D has the capacity to degrade QNC in a QNC-polluted paddy.


Assuntos
Actinobacteria/isolamento & purificação , Actinobacteria/metabolismo , Herbicidas/metabolismo , Oryza/crescimento & desenvolvimento , Quinolinas/metabolismo , Poluentes do Solo/metabolismo , Actinobacteria/classificação , Actinobacteria/genética , Biodegradação Ambiental , DNA Bacteriano/genética , Oryza/microbiologia , Filogenia , RNA Ribossômico 16S/genética , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...